Weak error for stable driven SDEs : expansion of the densities

نویسنده

  • Stéphane Menozzi
چکیده

Consider a multidimensional SDE of the form Xt = x + ∫ t 0 b(Xs−)ds + ∫ t 0 f(Xs−)dZs where (Zs)s≥0 is a symmetric stable process. Under suitable assumptions on the coefficients the unique strong solution of the above equation admits a density w.r.t. the Lebesgue measure and so does its Euler scheme. Using a parametrix approach, we derive an error expansion w.r.t. the time step for the difference of these densities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak differentiability of solutions to SDEs with semi-monotone drifts

‎In this work we prove Malliavin differentiability for the solution to an SDE with locally Lipschitz and semi-monotone drift‎. ‎To prove this formula‎, ‎we construct a sequence of SDEs with globally Lipschitz drifts and show that the $p$-moments of their Malliavin derivatives are uniformly bounded‎.

متن کامل

ASYMPTOTIC ERROR FOR THE MILSTEIN SCHEME FOR SDEs DRIVEN BY CONTINUOUS SEMIMARTINGALES

A Milstein-type scheme was proposed to improve the rate of convergence of its approximation of the solution to a stochastic differential equation driven by a vector of continuous semimartingales. A necessary and sufficient condition was provided for this rate to be 1/n when the SDE is driven by a vector of continuous local martingales, or continuous semimartingales under an additional assumptio...

متن کامل

The Weak Convergence Analysis of Tau-leaping Methods: Revisited

There are two scalings for the convergence analysis of tau-leaping methods in the literature. This paper attempts to resolve this debate in the paper. We point out the shortcomings of both scalings. We systematically develop the weak Ito-Taylor expansion based on the infinitesimal generator of the chemical kinetic system and generalize the rooted tree theory for ODEs and SDEs driven by Brownian...

متن کامل

SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations

It is known that if a stochastic process is a solution to a classical Itô stochastic differential equation (SDE), then its transition probabilities satisfy in the weak sense the associated Cauchy problem for the forward Kolmogorov equation. The forward Kolmogorov equation is a parabolic partial differential equation with coefficients determined by the corresponding SDE. Stochastic processes whi...

متن کامل

Stochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients

It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010